Daniel Lemire's blog
Generating arrays at compile-time in C++ with lambdas

Suppose that you want to check whether a character in C++ belongs to a fixed set, such as ‘\0’, ‘\x09’, ‘\x0a’,’\x0d’, ‘ ‘, ‘#’, ‘/’, ‘:’, ‘<‘, ‘>’, ‘?’, ‘@’, ‘[‘, ‘\\’, ‘]’, ‘^’, ‘|’. A simple way is to generate a 256-byte array of Boolean values and lookup the value. This approach is sometimes called memoization (and not memorization!!!). You might do it as follows:
constexpr static bool is_forbidden_host_code_point_table[] = {
  1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
bool is_forbidden_host_code_point(char c) {
  return is_forbidden_host_code_point_table[uint8_t(c)];
}


It is reasonably efficient in practice. Some people might object to how the table is generated. Can you have the C++ compiler generate the array at compile-time from a function?

Using C++17, you might do it with an std::array as follows:
constexpr static std::array<uint8_t, 256> is_forbidden_array = []() {
  std::array<uint8_t, 256> result{};
  for (uint8_t c : {'\0', '\x09', '\x0a','\x0d', ' ', '#', '/', ':',
    '<', '>', '?', '@', '[', '\\', ']', '^', '|'}) {
   result[c] = true;
  }
  return result;
}();

bool is_forbidden_host_code_point_array(char c) {
  return is_forbidden_array[uint8_t(c)];
}


These two approaches should be equivalent in practice.

source
 
 
Back to Top